A modified weak Galerkin finite element method
نویسندگان
چکیده
منابع مشابه
A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations
This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملA weak Galerkin finite element method for the Navier-Stokes equations
In this paper, a weak Galerkin finite element method (WGFEM) is proposed for solving the Navier-Stokes equations (NSEs). The existence and uniqueness of the WGFEM solution of NSEs are established. The WGFEM provides very accurate numerical approximations for both the velocity field and pressure field, even with very high Reynolds numbers. The salient feature is that the flexibility of the WGFEM...
متن کاملA Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation
This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivative...
متن کاملA C-weak Galerkin Finite Element Method for the Biharmonic Equation
Abstract. A C0-weak Galerkin (WG) method is introduced and analyzed for solving the biharmonic equation in 2D and 3D. A weak Laplacian is defined for C0 functions in the new weak formulation. This WG finite element formulation is symmetric, positive definite and parameter free. Optimal order error estimates are established in both a discrete H2 norm and the L2 norm, for the weak Galerkin finite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.04.014